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FREE CONVECTION FROM A SPHERE IN A 
SLIGHTLY-THERMALLY STRATIFIED FLUID 
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Abstract-The steady, axisymmetric flow of a vertically stratified viscous fluid over a fixed sphere is 
considered in a uniform gravity field. Analytical solutions are obtained by the singular perturbation 
technique valid for small (modified) Grashof numbers. Two cases are considered, viz. when the sphere is 
either thermally insulated or when its surface temperature is maintained constant equal to that of the fluid 
occupying the diametral plane. Streamlines are shown graphically in an axial plane for the flow near the 
sphere. It is found that for the thermally insulated sphere, the flow is like the one about a stationary sphere in 
a rotating fluid, i.e. the inflow near the equator changes into an outflow at the poles, the transition occurring 
at an angle of 54.5” measured from the poles. For the isothermal sphere, the streamlines are similar to those of 

a uniformly spinning sphere in a fluid at rest. 

NOMENCLATURE 

All primed quantities are dimensional; all unprimed 
quantities are dimensionless. Subscripted terms with m 

denote their corresponding values at the diametral 
plane 0,’ = 0). 

i:> B,, 
C,, D,, 
, 1 Em 

92 

G, 

Jo, J,, 

k’, 
p, 
pm 

Q,> Qm 

Qw 
r’, r, 
s, 

T’, T, 
dT;ldy’, 

, u,, or, 
4h vt,, 
Y’9 Y, 

radius of the sphere; 

set of arbitrary constants ; 

acceleration of gravity; 
square root of modified Grashof number 
(g’/?u’4(dT;/dy’)}“2/v’; 
Bessel function of the first kind and of 
order zero and one respectively; 
thermal conductivity; 
Prandtl number ; 
Legendre polynomials of the first kind 
and order n; 
amount of heat absorbed by the lower 
and 
upper hemispheres respectively; 
added vertical heat flux due to the sphere; 
radial coordinate r = +/a’; 

steepness parameter defined as 
[2u’(dTk/dy’)} divided by the 
temperature difference between the 
sphere 
and the fluid occupying the diametral 
plane; 
temperature, T’ = T,+u’(dTJ,/dy’)T; 
constant temperature gradient, describ- 
ing 
the constant stratification; 
r-component of velocity, u, = u:a’/v’G; 
&component of velocity, u,, = u;,a’/v’G ; 
y’ = r’ cos 0, y = y’/u’ ( = r’ cos O/u’). 

Greek symbols 

a’, thermal diffusivity ; 

p’> volumetric coefficient of thermal 
expansion ; 

0, 

P’, 

;:, $, 
6, 

colatitude or polar angle measured from 
the upward vertical 0 = 0 ; 
density ; 
kinematic viscosity; 
Stokes stream function I++ = $‘/Gv’a’; 
6 = - 1 for isothermal sphere and 6 = 0.5 
for thermally insulated sphere. 

I. INTRODUCTION 

FREE convection heat transfer from spheres at low 
Grashof numbers has recently drawn considerable 
interest. Analytical studies involving spherical geomet- 
ries have been presented by Mahony [l], Mack and 
Hardee [2], Hossain and Gebhart [3] and Fendell [4]. 
A number of experimental investigations at small and 
large Grashof numbers have also been reported in the 
literature [5-lo]. Eichhorn et ~11. [ll] performed 
experiments on natural convection from isothermal 
spheres and cylinders immersed in a thermally stra- 
tified fluid and presented heat-transfer data and visual 
observations of the flow field. Of interest to us is their 
qualitative description of the behavior of laminar 
plumes from isothermal spheres in terms of a steepness 
parameter s. 

The results presented in this paper correspond to the 
sphere problem investigated by Eichhorn et trl. [ 1 l] at 
small values of G when s = co. Theoretical solutions 
are obtained by the singular perturbation technique up 
to the second power in G for the isothermal and 
thermally insulated sphere. Streamlines for the isother- 
mal sphereindicate that theinflow at the poles changes 
into an outflow near the equator, similar to the flow for 
a rotating sphere in a fluid at rest. Although the 
photograph presented by Eichhorn et trl. for s = co in 
their Fig. 6 is true for large Grashof numbers, we find 
that the streamlines sketched in this paper are in 
qualitative agreement with their results. For thermally 
insulated spheres, the flow lines are similar to those on 
a stationary sphere in a rotating fluid (Singh [ 121). It is 
thus shown that there exists an analogy between 
rotating and thermally stratified fluid flows as de- 
scribed by Yih [13] and Veronis [14]. 
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2. FORMULATION 

We consider an otherwise undisturbed viscous fluid 
having a density distribution which varies slightly in 
the vertical but is constant in horizontal planes. A 
sphere is introduced which is either thermally in- 
sulated or whose surface temperature is maintained 
constant equal to that of the fluid at infinity in the 
(horizontal) diametral plane. The Navier-Stokes 
equations for steady, axisymmetric motion are (see 
Mack and Hardee [2] and Hossain and Gebhart [3]): 

D4~ = -Grsin0 
87 CoseaT 

sinBar+-- 
I de ) 

+Gsin(g; -g$j )jg&). (1) 

V2T= PG am- aw -- 
r2sintI de ar 

---, 
ar a6 (2) 

where 

Vz=fL ,2a +-_ c 1 
i a a 

I ar r2 sin 6 ae t 1 sine,, 

The dimensionless velocity components are related to 
$ as given by the following 

awe 
vr=yZt 

- a+jar 
u,, = -. 

rsintl (3) 

In the above equations, the Boussinesq approximation 
has been made (see Spiegel and Veronis [ 151). 

/f-P:. ~ = -B’(T’- T;), 
P:, 

T’ = T;+u(dT,/dy)T.(4) 

The boundary conditions are 

II, = a$/& = 0, T = 0 or aT/ar = 0 at r = 1 (5) 

V$/r+O, T+rcos6(ory) as r-+m. (6) 

The flow depends on two parameters G (square root of 
modified Grashof number) and P (Prandtl number). 
We attempt to solve the above system (1) and (2) 
subject to conditions (5) and (6)in ascending powers of 
G [P fixed] but a uniformly valid solution for small 
values of G does not exist (Kaplun and Lagerstrom 
[16] and Proudman and Pearson [17]). The Stokes 
solution of (1) and (2) valid near the sphere, is obtained 
by satisfying the conditions (5). The Oseen approxi- 
mation satisfies the conditions (6) and is true at 
infinity. The undetermined constants of the two so- 
lutions are evaluated by the matching technique. 

3. SOLUTION 

(i) Stokes expunsion 
For r = O(l), we assume an expansion of the form 

ICI = ~O(r,e)+GlCI,(r,e)+G2~2(r,8)+ . . . (7) 

.I‘= T,(r,g)+GT,(r, g)+G’T,(r,@)+ . . . (8) 

and substitute into equations (1) and (2). Since $ and 
a$/& vanish both at r = 1 and r = co, $,, is zero 
throughout. By similar arguments T,, T3,. . , and $2, 

ti4,. etc. are zero. For T,, equation (2) gives 

V2T0=0 (9) 

whose solution satisfying (5) and in view of (6) is 

T,=Acose r+4, 
c -1 r 

where 6 = - 1 for isothermal sphere (i.e. T, = 0 at r 
= 1) and 6 = 0.5 in case of thermally insulated sphere 
(aTo/& = 0 at r = 1). For IJ,, we obtain from (1) 

D4$, = 3A2 6sin2 8~0s 0/r2. (11) 

Solution of (1 1 ), such that $, has a double zero at r = 1 
is (Proudman and Pearson [17]) 

$, =f[B,[(2n-l)r”+3-(2n+l)r”+‘+2r-“+2] 
I 
+ C,[2r”+ ’ -(2n+l)r-“+2+(2n 

- l)r-“]}Q,(cos 0) 

+(A2dsin2Bcos0/8r2)(r2-l)2 (12) 

where 

Q,(P)= ['p.-,Wb (13) 
*I 

and P, are the Legendre polynomials of the first kind. 
The particular solution in (12) is such that A$,/r does 
not vanish as r approaches infinity. And hence (12) 
violates the condition (6). The reason for this break- 
down is that inertia and viscous terms become com- 
parable at large values of r. 

(ii) Stretched vuriclbles und Oseen expmsion 
The inertia and viscous terms far away from the 

sphere are of the order of ~r’4~~‘/3’(dT~ dy’), r’3) and 
(v’[r’Jg’/Y(dT’/dy’)]‘,2/r’3j respectively. Hence their 
ratio is 0{r2[a4g’/l’(dT&/dy’)]1/2/v’}, i.e. at infinity 

r2G 1: O(1). (14) 

Equation (14) suggests for the Oseen‘s variables 

r = p/G’12, T = x/G’12, I,/I = H/G312 (15) 

in terms of which the governing equations (1) and (2) 
become 

ax COST ax 
sin@-++- 

) 

:ik;c&) (16) 

v:x = P 

c 

aHax aHax ----_ 
pZ ,ae ap ap ae 1 (17) 

where 

D; =<+~??Cote a 
a# p2ae2 ~2 de 

_I I 

v;=k p’z 
( 1 

I a 

~2 ap a6 
+-_ 
p2 sin eae i 1 

sine; . 
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The conditions (5) and (6) are 

H = cheep =O, x =o Or ax,@? =o, at p 
G"2 

= 2 (18) 

VHIP + 0, x-+pcose as p-tm. (19) 

The Oseen expansion is assumed as 

x = %(P, e)+ft(Gfx,(p,8)+f,(G)x,(p,6)+ . . . (20) 

H = H,(p,B)+f,(G)il,(p,B)+f,(G)H,(p,B)+ . . . (21) 

such that&,(G) = O:_&(G)), n = 1,2,. . . . The lead- 
ing terms of the Oseen soiution, on account of (19) are 

H, = 0, xg = pcose. (22) 

On substituting (20) and (21) into (16) and (17) with 
(22), we get for the coefficients off,(G) 

(23) 

(24) 

(iii) Matching the Stokes and Oseen solutions 
On writing equation (10) in terms of Oseen variables 

defined by (15), its cont~bution to x is seen to be 

x * A(p +~)coso. 
Comparing (33) with (20) and (22), we find 

A = 1, f,(G) = G3’2. (34) 

From (33)it follows that the constants II,,(I) should be 
such that when [ and v tend to small values of order 
unity, x, w d cos t?,/p’. It is well known (Gradshteyn 
and Ryzhik [18]) 

f 

m 

R e- ““Jo(@) dh = 
0 

If we assume 

D,,(L) = d/3, (36) 

it can be shown that the integral in (29) becomes a 
particular case of (35) and X, N 6 cos 8/p2. To prove 
this, exp( - a,~) is expanded in a Taylor series such 
that (cl,~) u (dq) as 

exp(-a,?) = exp(-z)+(a,tl-z)[exp(-z)]’ 

+(a,r/-z)2[exp(-z)]“/2!+(a,~-z)3[exp(-z)]”’/3! 
+ .-., (37) 

where dashes denote differentiation with respect to z 
and iry = z. Also 

Equations (23) and (24) are transforms into cylindri- 
cal polar coordinates defined by e = p sin 0, q 
=p oseas 

f 

a2 la (72 , 2 

,p-yag+&T 
j 

ax, 
H1= -tag (25) 

The solution of (25) and (26) is obtained by Hankel 
transform. We define 

x, = I m Sx,J,(i.S)d& x1 = 
0 

(27) 

H, = 

(28) 

Equations (25)-(28) give (see Singh [12]) 

3 m 

x1= c 

i 

ID,(dfexp(-a,rl)J,(le)d;l, (2% n=l 0 

H,= i 
f 

m QYZ,(L)exp (-a,qfJ,(Lc)di. (30) 
n=t 0 

where Jo and J, are the Bessel functions of first kind 
and of order zero and unity respectively. I), and E, are 
constants related by 

and 

Q(L) = j,“(PL2)2/3E,(L) 

a; = 12+j,(Pi.2)L13, n = 1,2,3 

(31) 

(32) 

(j,,j2,j3) = ( 1, -‘Ia ) . 

exp(-@,r?) = exp(-z) + 

P 3 z3 

- 
+ 16L4 t 

,[exp(-z)]“‘+ ..,. (39) 

Substituting (36) into (29) and using only the first term 
on the RHS of (39) (other terms will be considered 
later) and the result f35), we obtain 

s 

m 
x, N &I exp( -%q)J,(n{) dL = b cos 8/p2.(40) 

0 

Equations (36) and (3 1) give 

E.(n) = &%/3jz (PA2)2’3. (41) 

Dividing (39) byjz(Pi2)2’3 and then summing it, we get 

n = , jf (Pr12 )2/3 
= +exp(--z) + $exp(--z). 

3 exp(--w) 
t: 

(42) 
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When (42)is substituted in (30) with E, given by (41), it 
becomes 

The first term on the RHS of (49) has already been 
considered in (40). From (29) and (49), we obtain 

=dtJJ (5’+v2P2-~ + y 1 _ ~ II 

8 r t 5 ( (52+q2)1’2 ,1 

= 6 sin’ 8 cos 0p2/8. (43) 

When equation (12) is expressed in terms of Oseen’s 
variables defined by (15) and is compared with (43), we 
find 

and 

B, = 0, C, = 0 

J/ , = (6 sin2 0 cos 8/8)(r - l/r)2. (44) 

(iv) Higher upproximcltion 

Now that the Stokes solution T, (10) and $I (44) has 
been obtained, it will be shown how a knowledge of the 
Oseen solution x1 (29) enables one to calculate the 
next higher Stokes approximation T,. From (2), we get 

1 
, (45) 

whose solution, (only pNtiCUkW integral) satisfying (5) 
is 

T,(r, 0) = 
~(5 ~083 e- 3 cos 8) 

2409 

x [r’ - 3r5 + 4r4 + 3r3 - 12r2 + 10r - 3) 

+ g[-12r’-24r5+12r4+4r3+24r2--41, 

or 
(46) 

T,(r, 0) = 
~(5 COSTS- 3 cos e) 

- 480r’ 

x [r’ - 3r5 - 2r4 + 3r3 + 6r2 - 6.875r + 1.51 

+$$[-12r’-24r5-6r4+4r3-12r2+2]. 

(47 ) 

Equation (46)is the solution satisfying T2 = 0 at r = 1, 
i.e. for isothermal sphere and (47) satisfies dT,/& = 0 
at r = 1, true for the thermally insulated sphere. If we 
can show that the remaining terms in equation (39) for 
x, represent the highest order terms in equation (46) 
and (47), i.e. 

6~(5 cos3e- 3 ~0~8) - 
240 

r2+6pC0se 2 
2or 

(48) 

then we are justified in neglecting the complementary 
part of the solution of (45) and (46) and (47) represents 
the next approximation. Equation (39) gives 

“?I exp(-w) = 3eW--h) 

‘I 

-i- 16A3 + 16A2 
“I+$& 36Pexp(-Au)+.... (49) 1 

x exp( -i.r~)J,(i~) di,. (50) 

The third integral on the RHS of equation (50) can be 
evaluated [see equation (35)] 

s m 

exp(-Aq)J,(l<)di = 
1 

0 (52+V2)“2 
=a. (51) 

The existence of the first two integrals of (49) is justified 
with the help of the theory of distributions and is 
evaluated according to the generalized Fourier trans- 
form technique (Lighthill [19]). Integrating by parts, 
we get 

.1 

m 
I= exp(-A~)J,(iS)~ 

-m i2 
CC 

= 
1 

-texp(-Q)J,(X) 
1 . --4 

+ . _)-[-llexp(-a)J,iit) c 
- 5 exp( - At!) J,(i.<)] dj.. (52) 

From (52), it follows 

= -5 O” I (53) 

We know (See Gradihyeyn and Ryzhik [ 181) 

s al 

0 

exp(-A,I).J,(i_t)s = (‘2+V;)“2-V . (54) 
i 

With the help of equations (51)-(54), it follows 
considering the relevant terms 

x , N - (Sp2 COG 8148) + dp2 cos 8116. (55) 

It is, thus, shown that subsequent terms can be 
accomodated satisfactorily within the scheme adop- 
ted. 

4. DISCUSSION OF RESULTS 

For the isothermal sphere (6 = -l), the stream 
function 1/1 (44) and the velocity components u, and u,, 
become 

II/ = -(G sin’ 0 cos e/8r2)(rz - 1)2, (56) 

V, = -G(3 cos’ f?- l)(l- l/r2)2/8, (57) 

v,) = -(G sin 0 cos e/4)(1 - l/r4). (58) 

From (57), it follows that at 0 = 0, u, is negative and at 
0 = rr/2, v, is positive. It changes sign at cos 0 = l/G, 
i.e. at 0 = 54.4”. Thus for this case inflow takes place at 
the pole (0 = 0) and changes into outflow at the 
equator (0 = 71/2). Streamlines are shown graphically 
in the first quadrant of Fig. 1. These are qualitatively 
similar to Fig. 6, s = co of Eichhorn et ul. [ 111. 

The temperature distribution is given by the equa- 
tions (IO) and (46) (A = 1, 6 = - 1). Isotherms are 
plotted in Fig. 2. 
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FIG. 1. 1Streamlines in an axial plane (i) for isothermal 
sphere in quadrant I and (ii) for thermally insulated sphere in 

quadrant II. 

POk 

Equator Ecwta 

FIG;. 2. Isotherms for the case of isothermal sphere PG’ 
= 0.5625. 

r--+--T 

FIG. 3. Isotherms for the case of thermally irisulated sphere 
PG’ = 0.5625. 

In this case since the upper hemispherical surface (0 
= 0 to 0 = n/2) is at a lower temperature than the 
surrounding fluid, heat is transfered from the fluid to 
the sphere. The amount of heat absorbed by the upper 
hemisphere is given by 

Similarly we can calculate the amount of heat rejected 
by the lower hemisphere Q,. The RHS of (59) when 
integrated within the limits from 0 = n/2 to 0 = A gives 
Q, = - kna2. (aT,/2y’) (3-13PG2/32). Thus we find Q, 
= -Q, i.e. the sphere absorbs heat at the top and 
rejects it at the bottom in equal amount, as observed by 
Eichhorn et al. [ 111. 

In the case of the thermally insulated sphere (6 
= 0.5) the stream function and velocity components 
are just (-0.5) times equations (56), (67) and (58). 
Hence all qualitative conclusions from the earlier 
equations also apply to this case but with senses 
reversed. Streamlines are sketched in quadrant II of 
Fig. 1 and these are similar to the flow about a 
stationary sphere in a rotating fluid (Singh [12]). The 

isotherms for this case are plotted in Fig. 3. Since 
nature of the flow lines as shown in Fig. 1 are in 
agreement with those for the flow due to a sphere 
rotating in a fluid at rest and the flow about a 
stationary sphere in a rotating fluid, we conclude that 
stratified and rotating flows are analogous (see Yih 
[ 131 and Veronis [14]). 
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CONVECTION LIBRE DUNE SPHERE DANS UN FLUIDE 
LEGEREMENT STRATIFIE THERMIQUEMENT 

R&me-On considere I’tcoulement permanent et axisymetrique d’un fluide visqueux et strati% verticale- 
ment autour d’une sphere fixe, dans un champ de gravite uniforme. On obtient des solutions analytiques 
par la technique des perturbations, valable pour de petits nombres de Grashof (modifies). Deux cas sont 
consider& selon que la sphere soit athermane ou que la temperature de sa surface soit constante et &gale 
a celle du fluide situ& au plan diametral. Les lignes de courant sont represent&es graphiquement dans un 
plan axial, a proximite de la sphere. On trouve que pour la sphere athermane, I’ecoulement est semblable 
a celui autour d’une sphere fixe dans un fluide en rotation: tcoulement rentrant pres de l’equateur et 
ecoulement fuyant aux poles, la transition apparaissant a un angle de 345” a partir des poles. Pour la 
sphere isotherme, les lignes de courant sont semblables a celles d’un fluide au repos autour d’une 

sphere tournante. 

FREIE KONVEKTION UM EINE KUGEL IN EINEM THERMISCH 
SCHWACH GESCHICHTETEN FLUID 

Zusammenfassung-Es wird die stationare, achsensymmetrische Stromung eines vertikal geschichteten 
zlhen Fluides urn eine feststehende Kugel in einem einheitlichen Gravitationsfeld betrachtet. Analvtische 
Losungen werden mit Hilfe der singularen Perturbationstechnik erhalten, welche fiir kleine (modifizierte) 
Grashof-Zahlen giiltig ist. Es werden zwei FLlle betrachtet. die adiabate Kueel und die KuBel konstanter 
Oberfllchentemp&atur (entsprechend der Fluidtemperatur’in Aquatorebene). Die Strom&en der kugel- 
nahen Stromung werden in einer axialen Ebene grafisch dargestellt. Die Stromung urn die adiabate Kugel 
entsprach derjenigen eines rotierenden Fluides urn eine station&e Kugel mit Zustriimung am Equator und 
Abstromung an den Polen; der Umschlag lag bei einem vom Pol aus gemessenen Winkel von 54,5”. Fiir den 
Fall der isothermen Kugel sind die Stromlinien ahnlich denjenigen urn eine gleichformig rotierende Kugel in 

einem ruhenden Fluid. 

CBOEOfiHAR KOHBEKIJMR OT C@EPbI, HAXOAllIIJEfiCx B TEPMMYECKH 
CJIAEO CTPATH’JHIJHPOBAHHOfi TMflKOCTW 

ABBoTBqBB - PaccMaTpHBaeTcs cTasBoBapBoe OCeCHMMeTPHYHOe Teqeme CTp~TH&iUHPOBiUfHO~ 

lT0 BepTHKtUIH BR3KOi4 XCHAKOCTH HaA C@pO# B OAHOPOAHOM rIOne TEiteCTH. c IlOMOUIbIO MeTOAa 

CHHryJIffpHbIX B03MYUWf2t,CIIpaBeAJlHBOrO ITpH HdOJIbIIIHX (MOAH&i4HPOBaHHbIX) 'IACJlaX rpaC- 

rO~,~OA~eHbIaHaAeTw~~KHepe~eHw~. PaCCMaTpHBaIoTCRABaCAy~ar:KOrAaC~pa TePMUYCCKH 

B3owpoBarra H rcorrra rebfneparypa ee noBepx~ocrri rromep)KHBaeTcB I~OCTOSIHHOZL w paBao# TeM- 
lIopaTyI3e IKKAKOCTH BAHaMeTPanbHO~IIAOCKOCTH. npeACTaBAeHbIAWHBHTOKaBOCCBO~~nnOCKOCTa 

B6nB3H C&pbI. HaBBeHo, ‘IT0 B CJIy’B% TepMHqoCKH B30JtHpOBaHHOk C@ZpbI Te%HHe nOnO6HO 
nOTOKy, OMbIBalomeMy HeIIOABlDKH)‘IO CtjFZpj’ BO BpaILVllO~ekSl XUAKOCTH, T. e. lTpHTOK y 3KBaTOpa 

lT~BpaIIW?TCa B OTTOK J' IIOJIHJCOB, lTpH'i%f 3TOT IIePeXOA I'fpOHCXOAHT IIOA YrJIOM 54,5”, OTCSB- 
TbIBaeMbIM OT llOJIFOCOB. &lff H3O~pMWIWKOii Ci$ZpbI,JIHHHH TOKa nOAO6HbI JlHHWIlM TOKa AAR 

C@pbI, PaBHOMepHO BpaLUiVOUIe8C~ B IIOKOKWehi ZKKAAKOCTU. 


